advent-2022-python/advent/days/day23/solution.py
2023-01-23 19:07:12 +01:00

191 lines
6.6 KiB
Python

from __future__ import annotations
from dataclasses import dataclass
from enum import IntEnum
from itertools import count, cycle
from typing import Iterator
from advent.common.position import Position
day_num = 23
def part1(lines: Iterator[str]) -> int:
ground = Ground.parse(lines)
ground.rounds(10)
return ground.count_empty()
def part2(lines: Iterator[str]) -> int:
ground = Ground.parse(lines)
result = ground.rounds(None)
if result is None:
assert False, "Unreachable"
return result
class Direction(IntEnum):
North = 0
South = 1
West = 2
East = 3
def next(self) -> Direction:
return Direction((self + 1) % 4)
def walk(self, position: Position) -> Position:
match self:
case Direction.North: return Position(position.x, position.y - 1)
case Direction.South: return Position(position.x, position.y + 1)
case Direction.West: return Position(position.x - 1, position.y)
case Direction.East: return Position(position.x + 1, position.y)
@dataclass(slots=True)
class Ground:
map: set[Position]
def __str__(self) -> str:
min_pos, max_pos = self.extent()
result = ""
for y in range(min_pos.y, max_pos.y + 1):
for x in range(min_pos.x, max_pos.x + 1):
if Position(x, y) in self.map:
result += '#'
else:
result += '.'
result += '\n'
return result[:-1]
@classmethod
def has_neighbor(cls, elves: dict[Position, int],
position: Position, direction: Direction) -> bool:
match direction:
case Direction.North:
return (
Position(position.x - 1, position.y - 1) in elves
or Position(position.x, position.y - 1) in elves
or Position(position.x + 1, position.y - 1) in elves
)
case Direction.South:
return (
Position(position.x - 1, position.y + 1) in elves
or Position(position.x, position.y + 1) in elves
or Position(position.x + 1, position.y + 1) in elves
)
case Direction.West:
return (
Position(position.x - 1, position.y - 1) in elves
or Position(position.x - 1, position.y) in elves
or Position(position.x - 1, position.y + 1) in elves
)
case Direction.East:
return (
Position(position.x + 1, position.y - 1) in elves
or Position(position.x + 1, position.y) in elves
or Position(position.x + 1, position.y + 1) in elves
)
def count_empty(self) -> int:
min_pos, max_pos = self.extent()
return (max_pos.x - min_pos.x + 1) * (max_pos.y - min_pos.y + 1) - len(self.map)
@classmethod
def parse(cls, lines: Iterator[str]) -> Ground:
map: set[Position] = set()
for y, line in enumerate(lines):
for x, tile in enumerate(line):
if tile == '#':
map.add(Position(x, y))
return Ground(map)
def extent(self) -> tuple[Position, Position]:
return Position.component_min(*self.map), Position.component_max(*self.map)
@classmethod
def minmax(cls, first: int, second: int) -> tuple[int, int]:
return (first, second) if first <= second else (second, first)
@classmethod
def pair_neighbors(cls, from_pos: Position, to_pos: Position) -> Iterator[Position]:
if from_pos.x == to_pos.x:
mn, mx = Ground.minmax(from_pos.y, to_pos.y)
yield Position(from_pos.x - 1, mn - 1)
yield Position(from_pos.x, mn - 1)
yield Position(from_pos.x + 1, mn - 1)
yield Position(from_pos.x - 1, from_pos.y)
yield Position(from_pos.x + 1, from_pos.y)
yield Position(from_pos.x - 1, mx + 1)
yield Position(from_pos.x, mx + 1)
yield Position(from_pos.x + 1, mx + 1)
else:
mn, mx = Ground.minmax(from_pos.x, to_pos.x)
yield Position(mn - 1, from_pos.y - 1)
yield Position(mn - 1, from_pos.y)
yield Position(mn - 1, from_pos.y + 1)
yield Position(from_pos.x, from_pos.y - 1)
yield Position(from_pos.x, from_pos.y + 1)
yield Position(mx + 1, from_pos.y - 1)
yield Position(mx + 1, from_pos.y)
yield Position(mx + 1, from_pos.y + 1)
def rounds(self, max_rounds: int | None) -> int | None:
start_dispenser = cycle(iter(Direction))
if max_rounds is None:
it = count(1)
else:
it = range(1, max_rounds + 1)
elves = {position: 0 for position in self.map}
for round in it:
start = next(start_dispenser)
proposals: dict[Position, Position] = {}
touched: set[Position] = set()
for from_pos, last_touched in elves.items():
if last_touched + 4 < round:
continue
found = False
for neighbor in from_pos.all_neighbors():
if neighbor in elves:
found = True
break
if not found:
continue
next_direction = start
found = True
while Ground.has_neighbor(elves, from_pos, next_direction):
next_direction = next_direction.next()
if next_direction == start:
found = False
break
if found:
to_pos = next_direction.walk(from_pos)
old_from = proposals.pop(to_pos, None)
if old_from is None:
proposals[to_pos] = from_pos
else:
touched.add(from_pos)
touched.add(old_from)
if not proposals:
self.map = set(elves)
return round
for to_pos, from_pos in proposals.items():
elves[to_pos] = round
del elves[from_pos]
for neighbor in Ground.pair_neighbors(from_pos, to_pos):
if neighbor in elves:
elves[neighbor] = round
for touched_pos in touched:
elves[touched_pos] = round
self.map = set(elves)
return None